|
Алгоритм предварительной перестановкиТеперь рассмотрим конкретную реализацию БПФ. Пусть имеется
Итого выполняется Рассмотрим двоичное представление номеров элементов и занимаемых ими мест. Элемент с номером 0 (двоичное 0000) после всех перестановок занимает позицию 0 (0000), элемент 8 (1000) - позицию 1 (0001), элемент 4 (0100) - позицию 2 (0010), элемент 12 (1100) - позицию 3 (0011). И так далее. Нетрудно заметить связь между двоичным представлением позиции до перестановок и после всех перестановок: они зеркально симметричны. Двоичное представление конечной позиции получается из двоичного представления начальной позиции перестановкой битов в обратном порядке. И наоборот. Этот факт не является случайностью для конкретного Здесь как обычно В ассемблере эта операция называется циклическим сдвигом вправо (ror),
если рис. 1 Дальнейшие разбиения выполняются аналогично. На каждом следующем шаге
количество последовательностей удваивается, а число элементов в каждой из них
уменьшается вдвое. Операции рис. 2 Что происходит с номерами позиций при таких последовательных операциях?
Давайте проследим за произвольным битом номера позиции. Пусть этот бит находился
в Теперь, мы убедились в том, что перестановка элементов действительно осуществляется по принципу, при котором в номерах позиций происходит в свою очередь другая перестановка: зеркальная перестановка двоичных разрядов. Это позволит нам получить простой алгоритм: for(I = 1; I < N-1; I++) { J = reverse(I,T); // reverse переставляет биты в I в обратном порядке if (I >= J) // пропустить уже переставленные conitnue; S = x[I]; x[I] = x[J]; x[J] = S; // перестановка элементов xI и xJ } Некоторую проблему представляет собой операция обратной перестановки бит
номера позиции reverse(), которая не реализована ни в популярной архитектуре
Intel, ни в наиболее распространенных языках программирования. Приходится
реализовывать ее через другие битовые операции. Ниже приведен алгоритм функции
перестановки unsigned int reverse(unsigned int I, int T) { int Shift = T - 1; unsigned int LowMask = 1; unsigned int HighMask = 1 << Shift; unsigned int R; for(R = 0; Shift >= 0; LowMask <<= 1, HighMask >>= 1, Shift -= 2) R |= ((I & LowMask) << Shift) | ((I & HighMask) >> Shift); return R; } Пояснения к алгоритму. В переменных 0000...001 0000...010 0000...100 ... Вторая маска ( 1000...000 0100...000 0010...000 ..., каждую итерацию сдвигая единичный бит на Переменная Операция Вместо того чтобы переставлять биты позиций местами, можно применить и другой
метод. Для этого надо вести отсчет I = 0; J = 0; for(J1 = 0; J1 < 2; J4++, J ^= 1) for(J2 = 0; J2 < 2; J3++, J ^= 2) for(J4 = 0; J4 < 2; J4++, J ^= 4) for(J8 = 0; J8 < 2; J8++, J ^= 8) { if (I < J) { S = x[I]; x[I] = x[J]; x[J] = S; // перестановка элементов xIи xJ } I++; } В этом алгоритме используется тот общеизвестный факт, что при увеличении числа от 0 до бесконечности (с приращением на единицу) каждый бит меняется с 0 на 1 и обратно с определенной периодичностью: младший бит - каждый раз, следующий - каждый второй раз, следующий - каждый четвертый и так далее. Эта периодичность реализована в виде Данный алгоритм имеет тот недостаток, что требует разного числа вложенных
циклов в зависимости от
int Index[MAX_T]; int Mask[MAX_T]; int R; for(I = 0; I < T; I++) { Index[I] = 0; Mask[I] = 1 << (T - I - 1); } J = 0; for(I = 0; I < N; I++) { if (I < J) { S = x[I]; x[I] = x[J]; x[J] = S; // перестановка элементов xI и xJ } for(R = 0; R < T; R++) { J ^= Mask[R]; if (Index[R] ^= 1) // эквивалентно Index[R] ^= 1; if (Index[R] != 0) break; } } Величина И, наконец, последний алгоритм. Он использует классический подход к многоразрядным битовым операциям: надо разделить 32-бита на 4 байта, выполнить перестановку в каждом из них, после чего переставить сами байты. Перестановку бит в одном байте уже можно делать по таблице. Для нее нужно
заранее приготовить массив Теперь этот массив применим для последней реализации функции reverse: unsigned int reverse(unsigned int I, int T) { unsigned int R; unsigned char *Ic = (unsigned char*) &I; unsigned char *Rc = (unsigned char*) &R; Rc[0] = reverse256[Ic[3]]; Rc[1] = reverse256[Ic[2]]; Rc[2] = reverse256[Ic[1]]; Rc[3] = reverse256[Ic[0]]; R >>= (32 - T); Return R; } Обращения к массиву рис. 3 Оценим сложность описанных алгоритмов. Понятно, что все они пропорциональны
С другой стороны, предварительная перестановка занимает мало времени по
сравнению с последующими операциями, использующими
static unsigned char reverse256[]= { 0x00, 0x80, 0x40, 0xC0, 0x20, 0xA0, 0x60, 0xE0, 0x10, 0x90, 0x50, 0xD0, 0x30, 0xB0, 0x70, 0xF0, 0x08, 0x88, 0x48, 0xC8, 0x28, 0xA8, 0x68, 0xE8, 0x18, 0x98, 0x58, 0xD8, 0x38, 0xB8, 0x78, 0xF8, 0x04, 0x84, 0x44, 0xC4, 0x24, 0xA4, 0x64, 0xE4, 0x14, 0x94, 0x54, 0xD4, 0x34, 0xB4, 0x74, 0xF4, 0x0C, 0x8C, 0x4C, 0xCC, 0x2C, 0xAC, 0x6C, 0xEC, 0x1C, 0x9C, 0x5C, 0xDC, 0x3C, 0xBC, 0x7C, 0xFC, 0x02, 0x82, 0x42, 0xC2, 0x22, 0xA2, 0x62, 0xE2, 0x12, 0x92, 0x52, 0xD2, 0x32, 0xB2, 0x72, 0xF2, 0x0A, 0x8A, 0x4A, 0xCA, 0x2A, 0xAA, 0x6A, 0xEA, 0x1A, 0x9A, 0x5A, 0xDA, 0x3A, 0xBA, 0x7A, 0xFA, 0x06, 0x86, 0x46, 0xC6, 0x26, 0xA6, 0x66, 0xE6, 0x16, 0x96, 0x56, 0xD6, 0x36, 0xB6, 0x76, 0xF6, 0x0E, 0x8E, 0x4E, 0xCE, 0x2E, 0xAE, 0x6E, 0xEE, 0x1E, 0x9E, 0x5E, 0xDE, 0x3E, 0xBE, 0x7E, 0xFE, 0x01, 0x81, 0x41, 0xC1, 0x21, 0xA1, 0x61, 0xE1, 0x11, 0x91, 0x51, 0xD1, 0x31, 0xB1, 0x71, 0xF1, 0x09, 0x89, 0x49, 0xC9, 0x29, 0xA9, 0x69, 0xE9, 0x19, 0x99, 0x59, 0xD9, 0x39, 0xB9, 0x79, 0xF9, 0x05, 0x85, 0x45, 0xC5, 0x25, 0xA5, 0x65, 0xE5, 0x15, 0x95, 0x55, 0xD5, 0x35, 0xB5, 0x75, 0xF5, 0x0D, 0x8D, 0x4D, 0xCD, 0x2D, 0xAD, 0x6D, 0xED, 0x1D, 0x9D, 0x5D, 0xDD, 0x3D, 0xBD, 0x7D, 0xFD, 0x03, 0x83, 0x43, 0xC3, 0x23, 0xA3, 0x63, 0xE3, 0x13, 0x93, 0x53, 0xD3, 0x33, 0xB3, 0x73, 0xF3, 0x0B, 0x8B, 0x4B, 0xCB, 0x2B, 0xAB, 0x6B, 0xEB, 0x1B, 0x9B, 0x5B, 0xDB, 0x3B, 0xBB, 0x7B, 0xFB, 0x07, 0x87, 0x47, 0xC7, 0x27, 0xA7, 0x67, 0xE7, 0x17, 0x97, 0x57, 0xD7, 0x37, 0xB7, 0x77, 0xF7, 0x0F, 0x8F, 0x4F, 0xCF, 0x2F, 0xAF, 0x6F, 0xEF, 0x1F, 0x9F, 0x5F, 0xDF, 0x3F, 0xBF, 0x7F, 0xFF, }; unsigned int I, J; unsigned char *Ic = (unsigned char*) &I; unsigned char *Jc = (unsigned char*) &J; for(I = 1; I < N - 1; I++) { Jc[0] = reverse256[Ic[3]]; Jc[1] = reverse256[Ic[2]]; Jc[2] = reverse256[Ic[1]]; Jc[3] = reverse256[Ic[0]]; J >>= (32 - T); if (I < J) { S = x[I]; x[I] = x[J]; x[J] = S; } }
|